

Georges-Köhler Allee, Geb. 51 D-79110 Freiburg Tel. (0761) 203-8120 Tel. (0761) 203-8127

Formal Foundations of Information Systems Summerterm 2009

23.06.2009

6. Exercise Set: Petri Nets: P/T Nets

Exercise 22 (Modellierung von S/T-Netzen, 3 Punkte)

Given the model for the 3-philosopher's problem discussed in the lecture, model the 4-philosopher's prolem. Provide your result both graphically and through formal declaraction of the defining quintuple $N = (S, T, F, V, m_0)$

Exercise 23 (Modellierung von S/T-Netzen, 3 Punkte)

Model the following *Handshaking* protocol as a P/T Petri Net:

Two processes P_1 and P_2 mutually exchange messages. P_1 is the sender and P_2 the receiver. After P_1 has sent a message to P_2 , he changes into the state $Ready_to_Receive$ and waits for an acknowledgement ACK of the receipt by P_2 . After the receipt of the acknowledgement he can send more messages.

 P_2 starts in state *Waiting_for_Messages*. If he receives a message, he confirms the receipt by sending an acknowledge *ACK* message to P_1 and waits for more messages.

Exercise 24 (Erreichbarkeit in S/T-Netzen, 2+1+2=5 Punkte)

Consider the P/T Petri Net below.

- a) Provide for all transitions t_i the vectors t_i^+ , t_i^- , and Δt_i , as well as the current marking m.
- b) Check if the string $t_1t_2t_3 \in W(T)$ is contained in $L_N(m)$ using the vectors from part a).

c) Let
$$m' := \begin{pmatrix} 0 \\ 2 \\ 0 \\ 2 \end{pmatrix}$$
. Find all $q \in W(T)$ such that $m[q > m']$ holds

Exercise 25 (Erreichbarkeit in S/T-Netzen, 2 Punkte)

Let $q := t_1 \dots t_n \in W(T)$ und $\Delta q := \sum_{i=1}^n \Delta t_i$. Show that $m[q > m' \Leftarrow m' = m + \Delta q \text{ holds or give a counter example.}]$

Due by: 30.06.2009